Signal Filtering¶
Removing DC component (removing drift) - using IIR¶
import numpy as np
import matplotlib.pyplot as plt
import spkit as sp
xf = sp.filterDC(x,alpha=256,return_background=False)
Removing DC component (removing drift) - using Savitzky-Golay filter¶
import numpy as np
import matplotlib.pyplot as plt
import spkit as sp
xf = sp.filterDC_sGolay(x,window_length=127, polyorder=3)
Filtering frequency components - using IIR (butterworth) filter¶
import numpy as np
import matplotlib.pyplot as plt
import spkit as sp
#highpass
Xf = sp.filter_X(X,band =[0.5],btype='highpass',order=5,fs=128.0,ftype='filtfilt')
#bandpass
Xf = sp.filter_X(X,band =[1, 4],btype='bandpass',order=5,fs=128.0,ftype='filtfilt')
#lowpass
Xf = sp.filter_X(X,band =[40],btype='lowpass',order=5,fs=128.0,ftype='filtfilt')
Wavelet Filtering¶
import spkit as sp
xf = sp.wavelet_filtering(x,wv='db3',threshold='optimal')
#check help(sp.wavelet_filtering)
Wavelet Filtering - on smaller windows¶
import spkit as sp
xf = sp.wavelet_filtering_win(x,wv='db3',threshold='optimal',winsize=128)
#check help(sp.wavelet_filtering)
#TODO - figures- details